CHƯƠNG III. PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN
Tìm giá trị của k sao cho:
Phương trình: 2x + k = x – 1 có nghiệm x = – 2.
Phương trình: (2x + 1)(9x + 2k) – 5(x + 2) = 40 có nghiệm x = 2
Phương trình: 2(2x + 1) + 18 = 3(x + 2)(2x + k) có nghiệm x = 1
Phương trình: 5(m + 3x)(x + 1) – 4(1 + 2x) = 80 có nghiệm x = 2
Tìm các giá trị của m, a và b để các cặp phương trình sau đây tương đương:
mx2 – (m + 1)x + 1 = 0 và (x – 1)(2x – 1) = 0
(x – 3)(ax + 2) = 0 và (2x + b)(x + 1) = 0
Giải các phương trình sau bằng cách đưa về dạng ax + b = 0:
1. a) 3x – 2 = 2x – 3 b) 3 – 4y + 24 + 6y = y + 27 + 3y
c) 7 – 2x = 22 – 3x d) 8x – 3 = 5x + 12
2. a) 5 – (x – 6) = 4(3 – 2x) b) 2x(x + 2)2 – 8x2 = 2(x – 2)(x2 + 2x + 4)
c) 7 – (2x + 4) = – (x + 4) d) (x – 2)3 + (3x – 1)(3x + 1) = (x + 1)3
3. a) 1,2 – (x – 0,8) = –2(0,9 + x) b) 3,6 – 0,5(2x + 1) = x – 0,25(2 – 4x)
c) 2,3x – 2(0,7 + 2x) = 3,6 – 1,7x d) 0,1 – 2(0,5t – 0,1) = 2(t – 2,5) – 0,7
4. a)  b) 
c)  d) 
e)  f) 
5. a)  b) 
c)  d) 
Bài 4. Tìm giá trị của x sao cho các biểu thức A và B cho sau đây có giá trị bằng nhau:
A = (x – 3)(x + 4) – 2(3x – 2) và B = (x – 4)2
A = (x + 2)(x – 2) + 3x2 và B = (2x + 1)2 + 2x
A = (x – 1)(x2 + x + 1) – 2x và B = x(x – 1)(x + 1)
A = (x + 1)3 – (x – 2)3 và B = (3x –1)(3x +1).
Bài 5. Giải các phương trình sau:
a)  b) 
c) 
Bài 6. Giải các phương trình sau:
a)  b) 
Bài 7. Giải các phương trình tích sau:
1. a) (3x – 2)(4x + 5) = 0 b) (2,3x – 6,9)(0,1x + 2) = 0
c) (4x + 2)(x2 + 1) = 0 d) (2x + 7)(x – 5)(5x + 1) = 0
e) (x – 1)(2x + 7)(x2 + 2) = 0 f) (4x – 10)(24 + 5x) = 0
g) (3,5 – 7x)(0,1x + 2,3) = 0 h) (5x + 2)(x – 7) = 0
i) 15(x + 9)(x – 3) (x + 21) = 0 j) (x2 + 1)(x2 – 4x + 4) = 0
k) (3x – 2) = 0 l) (3,3 – 11x)= 0
2. a) (3x + 2)(x2 – 1) = (9x2 – 4)(x + 1) b)x(x + 3)(x – 3) – (x + 2)(x2 – 2x + 4) = 0
c) 2x(x – 3) +