Chương V. §3. Đạo hàm của hàm số lượng giác

Chú ý:Đây là bản xem thử online, xin hãy chọn download miễn phí bên dưới để xem bản đẹp dạng .pptx
  • Chương V. §3. Đạo hàm của hàm số lượng giác - 1
  • Chương V. §3. Đạo hàm của hàm số lượng giác - 2
  • Chương V. §3. Đạo hàm của hàm số lượng giác - 3
  • Chương V. §3. Đạo hàm của hàm số lượng giác - 4
  • download
Có thể download miễn phí file .pptx bên dưới
Đăng ngày 4/12/2017 4:26:55 PM | Thể loại: ĐS-GT 11 | Lần tải: 21 | Lần xem: 0 | Page: 9 | FileSize: 0.24 M | File type: pptx
0 lần xem

bài giảng Chương V. §3. Đạo hàm của hàm số lượng giác, ĐS-GT 11. . tailieuhoctap.com giới thiệu tới cộng đồng tài liệu Chương V. §3. Đạo hàm của hàm số lượng giác .Để chia sẽ thêm cho các bạn nguồn thư viện tham khảo giúp đỡ cho công tác giảng dạy, học tập và nghiên cứu khoa học, trân trọng kính mời đọc giả đang tìm cùng xem , Tài liệu Chương V. §3. Đạo hàm của hàm số lượng giác trong chuyên mục ĐS-GT 11 được giới thiệu bởi bạn Thien Quang tới các bạn nhằm mục đích nâng cao kiến thức , thư viện này được chia sẽ vào mục ĐS-GT 11 , có tổng cộng 9 page, thuộc định dạng .pptx, cùng chủ đề còn có Bài giảng Toán học Toán học 11 Đại số và Giải tích 11 ,bạn có thể tải về free , hãy chia sẽ cho cộng đồng cùng học tập Giáo viên : Nguyễn Văn Minh Lớp: 11D1 LUYỆN TẬP ĐẠO HÀM CỦA CÁC HÀM SỐ LƯỢNG GIÁC Kiểm tra bài cũ 1, nói thêm (sinx)’ = 2,còn cho biết thêm (cosx)’ = 3, kế tiếp là (tanx)’ = 4, bên cạnh đó (cotx)’ = 1, kế tiếp là Viết công thức tính đạo hàm của những hàm số lượng giác: cosx -sinx 2, tiếp theo là Viết công thức tính đạo hàm của những hàm hợp: Với U = U(x) 5, bên cạnh đó (Un)’ = 7, nói thêm là (sinU)’

https://tailieuhoctap.com/baigiangdsgt11/chuong-v-3-dao-ham-cua-ham-so-luong-giac.uqet0q.html

Nội dung

Cũng như các thư viện tài liệu khác được thành viên chia sẽ hoặc do tìm kiếm lại và giới thiệu lại cho các bạn với mục đích học tập , chúng tôi không thu tiền từ bạn đọc ,nếu phát hiện nội dung phi phạm bản quyền hoặc vi phạm pháp luật xin thông báo cho chúng tôi,Ngoài giáo án bài giảng này, bạn có thể download Download tài liệu,đề thi,mẫu văn bản miễn phí phục vụ nghiên cứu Một số tài liệu tải về mất font không xem được, nguyên nhân máy tính bạn không hỗ trợ font củ, bạn tải các font .vntime củ về cài sẽ xem được.

Bạn có thể Tải về miễn phí bài giảng này , hoặc tìm kiếm các bài giảng




Giáo viên : Nguyễn Văn Minh
Lớp: 11D1
LUYỆN TẬP ĐẠO HÀM CỦA CÁC HÀM SỐ LƯỢNG GIÁC
Kiểm tra bài cũ
1. (sinx)’ =
2. (cosx)’ =
3. (tanx)’ =

4. (cotx)’ =
1.Viết công thức tính đạo hàm
của các hàm số lượng giác:
cosx
-sinx
2.Viết công thức tính đạo hàm
của các hàm hợp: Với U = U(x)
5. (Un)’ =

7. (sinU)’ =
8. (cosU)’ =
9. (tanU)’ =

10. (cotU)’ =
U’.cosU
-U’sinU
n.Un-1.U’ ; n  N*.
Bài 1: Tính đạo hàm các hàm số sau:
a. y = 5cos2x + 3sinx;
c. y = x2cotx;
Bài giải
a. y’ = (5cos2x)’ + (3sinx)’ = -5(2x)’sin2x + 3cosx
<=> y’ = -10sin2x + 3sinx.
Bài 1: Tính đạo hàm các hàm số sau:
Bài giải
Bài giải
Bài 2: Giải các phương trình y’ = 0 sau :
a. y = 5cos2x + 3sinx; b. y = cos2x; c. y = 3cosx + 4sinx + 5x.
a. y’ = (5cos2x)’ + (3sinx)’
<=> y’ = -5(2x)’sin2x + 3cosx
<=> y’ = -10sin2x + 3cosx.
y’ = 0 <=> -10sin2x + 3cosx = 0
<=> -20sinxcosx + 3cosx = 0
<=> cosx(-20sinx + 3) = 0
b. y’ = (cos2x)’ = 2cosx(cosx)’
<=> y’ = -2cosx.sinx = - sin2x.
y’ = 0 <=> -sin2x = 0
<=> sin2x = sin0
<=> 2x = k
Bài 2: Giải các phương trình y’ = 0 sau :
a. y = 5cos2x + 3sinx; b. y = cos2x; c. y = 3cosx + 4sinx + 5x.
Bài giải
c. y’ = (3cosx)’ + (4sinx)’ + (5x)’ = -3sinx + 4cosx + 5.
y’ = 0 <=> -3sinx + 4cosx + 5 = 0 <=> 3sinx - 4cosx = 5.
Có: Chia 2 vế phương trình cho 5 có:
đặt:
Bài 3: Bài tập trắc nghiệm: Chọn phương án đúng.
Tập nghiệm của bất phương trình f’(x) < 0 là:
A.;
B.(2; +∞);
C.[-2; 2];
D.(-∞; +∞).
2.Nếu f(x) = sinx + x2 thì bằng:
D.Một kết quả khác.
3.Nếu f(x) = tan3x thì f’(x) bằng:
Nghiệm f’(x) = 0 là:
Kiến thức cần nhớ
1. (sinx)’ =
2. (cosx)’ =
3. (tanx)’ =

4. (cotx)’ =
1.Đạo hàm của các hàm số lượng giác:
cosx
-sinx
2.Đạo hàm của các hàm hợp: Với U = U(x)
5. (Un)’ =

7. (sinU)’ =
8. (cosU)’ =
9. (tanU)’ =

10. (cotU)’ =
U’.cosU
-U’sinU
n.Un-1.U’ ; n  N*.
BTVN: 2,3,4,6: SGK
Bài 2: SGK T168. Giải các bất phương trình sau: